貌离神合的RNN与ODE:花式RNN简介
By 苏剑林 | 2018-06-23 | 94490位读者 |本来笔者已经决心不玩RNN了,但是在上个星期思考时忽然意识到RNN实际上对应了ODE(常微分方程)的数值解法,这为我一直以来想做的事情——用深度学习来解决一些纯数学问题——提供了思路。事实上这是一个颇为有趣和有用的结果,遂介绍一翻。顺便地,本文也涉及到了自己动手编写RNN的内容,所以本文也可以作为编写自定义的RNN层的一个简单教程。
注:本文并非前段时间的热点“神经ODE”的介绍(但有一定的联系)。
RNN基本 #
什么是RNN? #
众所周知,RNN是“循环神经网络(Recurrent Neural Network)”,跟CNN不同,RNN可以说是一类模型的总称,而并非单个模型。简单来讲,只要是输入向量序列$(\boldsymbol{x}_1,\boldsymbol{x}_2,\dots,\boldsymbol{x}_T)$,输出另外一个向量序列$(\boldsymbol{y}_1,\boldsymbol{y}_2,\dots,\boldsymbol{y}_T)$,并且满足如下递归关系
$$\boldsymbol{y}_t=f(\boldsymbol{y}_{t-1}, \boldsymbol{x}_t, t)\tag{1}$$
的模型,都可以称为RNN。也正因为如此,原始的朴素RNN,还有改进的如GRU、LSTM、SRU等模型,我们都称为RNN,因为它们都可以作为上式的一个特例。还有一些看上去与RNN没关的内容,比如前不久介绍的CRF的分母的计算,实际上也是一个简单的RNN。
说白了,RNN其实就是递归计算。
自己编写RNN #
这里我们先介绍如何用Keras简单快捷地编写自定义的RNN。
事实上,不管在Keras还是纯tensorflow中,要自定义自己的RNN都不算复杂。在Keras中,只要写出每一步的递归函数;而在tensorflow中,则稍微复杂一点,需要将每一步的递归函数封装为一个RNNCell类。下面介绍用Keras实现最基本的一个RNN:
$$\boldsymbol{y}_t=\tanh(\boldsymbol{W}_1 \boldsymbol{y}_{t-1} + \boldsymbol{W}_2 \boldsymbol{x}_t + \boldsymbol{b})\tag{2}$$
代码非常简单:
#! -*- coding: utf-8- -*-
from keras.layers import Layer
import keras.backend as K
class My_RNN(Layer):
def __init__(self, output_dim, **kwargs):
self.output_dim = output_dim # 输出维度
super(My_RNN, self).__init__(**kwargs)
def build(self, input_shape): # 定义可训练参数
self.kernel1 = self.add_weight(name='kernel1',
shape=(self.output_dim, self.output_dim),
initializer='glorot_normal',
trainable=True)
self.kernel2 = self.add_weight(name='kernel2',
shape=(input_shape[-1], self.output_dim),
initializer='glorot_normal',
trainable=True)
self.bias = self.add_weight(name='bias',
shape=(self.output_dim,),
initializer='glorot_normal',
trainable=True)
def step_do(self, step_in, states): # 定义每一步的迭代
step_out = K.tanh(K.dot(states[0], self.kernel1) +
K.dot(step_in, self.kernel2) +
self.bias)
return step_out, [step_out]
def call(self, inputs): # 定义正式执行的函数
init_states = [K.zeros((K.shape(inputs)[0],
self.output_dim)
)] # 定义初始态(全零)
outputs = K.rnn(self.step_do, inputs, init_states) # 循环执行step_do函数
return outputs[0] # outputs是一个tuple,outputs[0]为最后时刻的输出,
# outputs[1]为整个输出的时间序列,output[2]是一个list,
# 是中间的隐藏状态。
def compute_output_shape(self, input_shape):
return (input_shape[0], self.output_dim)
可以看到,虽然代码行数不少,但大部分都只是固定格式的语句,真正定义rnn的,是step_do这个函数,这个函数接受两个输入:step_in和states。其中step_in是一个(batch_size, input_dim)的张量,代表当前时刻的样本$\boldsymbol{x}_t$,而states是一个list,代表$\boldsymbol{y}_{t-1}$及一些中间变量;特别要注意的是,states是一个张量的list,而不是单个张量,这是因为在递归过程中可能要同时传递多个中间变量,而不仅仅是$\boldsymbol{y}_{t-1}$一个,比如LSTM就需要有两个态张量。最后step_do要返回$\boldsymbol{y}_t$和新的states,这是step_do这步的函数的编写规范。
而K.rnn这个函数,接受三个基本参数(还有其他参数,请自行看官方文档),其中第一个参数就是刚才写好的step_do函数,第二个参数则是输入的时间序列,第三个是初始态,跟前面说的states一致,所以很自然init_states也是一个张量的list,默认情况下我们会选择全零初始化。
ODE基本 #
什么是ODE? #
ODE就是“常微分方程(Ordinary Differential Equation)”,这里指的是一般的常微分方程组:
$$\dot{\boldsymbol{x}}(t)=\boldsymbol{f}\big(\boldsymbol{x}(t), t\big)\tag{3}$$
研究ODE的领域通常也直接称为“动力学”、“动力系统”,这是因为牛顿力学通常也就只是一组ODE而已。
ODE可以产生非常丰富的函数。比如$e^t$其实就是$\dot{x}=x$的解,$\sin t$和$\cos t$都是$\ddot{x}+x=0$的解(初始条件不同)。事实上,我记得确实有一些教程是直接通过微分方程$\dot{x}=x$来定义$e^t$函数的。除了这些初等函数,很多我们能叫得上名字但不知道是什么鬼的特殊函数,都是通过ODE导出来的,比如超几何函数、勒让德函数、贝塞尔函数...
总之,ODE能产生并且已经产生了各种各样千奇百怪的函数~
数值解ODE #
能精确求出解析解的ODE其实是非常少的,所以很多时候我们都需要数值解法。
ODE的数值解已经是一门非常成熟的学科了,这里我们也不多做介绍,仅引入最基本的由数学家欧拉提出来的迭代公式:
$$\boldsymbol{x}(t + h) = \boldsymbol{x}(t) + h \boldsymbol{f}\big(\boldsymbol{x}(t), t\big)\tag{4}$$
这里的$h$是步长。欧拉的解法来源很简单,就是用
$$\frac{\boldsymbol{x}(t + h) - \boldsymbol{x}(t)}{h}\tag{5}$$
来近似导数项$\dot{\boldsymbol{x}}(t)$。只要给定初始条件$\boldsymbol{x}(0)$,我们就可以根据$(4)$一步步迭代算出每个时间点的结果。
ODE与RNN #
ODE也是RNN #
大家仔细对比$(4)$和$(1)$,发现有什么联系了吗?
在$(1)$中,$t$是一个整数变量,在$(4)$中,$t$是一个浮点变量,除此之外,$(4)$跟$(1)$貌似就没有什么明显的区别了。事实上,在$(4)$中我们可以以$h$为时间单位,记$t=nh$,那么$(4)$变成了
$$\boldsymbol{x}\big((n+1)h\big) = \boldsymbol{x}(nh) + h \boldsymbol{f}\big(\boldsymbol{x}(nh), nh\big)\tag{6}$$
可以看到现在$(6)$中的时间变量$n$也是整数了。
这样一来,我们就知道:ODE的欧拉解法$(4)$实际上就是RNN的一个特例罢了。这里我们也许可以间接明白为什么RNN的拟合能力如此之强了(尤其是对于时间序列数据),我们看到ODE可以产生很多复杂的函数,而ODE只不过是RNN的一个特例罢了,所以RNN也就可以产生更为复杂的函数了。
用RNN解ODE #
于是,我们就可以写一个RNN来解ODE了,比如《两生物种群竞争模型》中的例子:
$$\left\{\begin{aligned}\frac{dx_1}{dt}=r_1 x_1\left(1-\frac{x_1}{N_1}\right)-a_1 x_1 x_2 \\
\frac{dx_2}{dt}=r_2 x_2\left(1-\frac{x_2}{N_2}\right)-a_2 x_1 x_2\end{aligned}\right.\tag{7}$$
我们可以写出
#! -*- coding: utf-8- -*-
from keras.layers import Layer
import keras.backend as K
class ODE_RNN(Layer):
def __init__(self, steps, h, **kwargs):
self.steps = steps
self.h = h
super(ODE_RNN, self).__init__(**kwargs)
def step_do(self, step_in, states): # 定义每一步的迭代
x = states[0]
r1,r2,a1,a2,iN1,iN2 = 0.1,0.3,0.0001,0.0002,0.002,0.003
_1 = r1 * x[:,0] * (1 - iN1 * x[:,0]) - a1 * x[:,0] * x[:,1]
_2 = r2 * x[:,1] * (1 - iN2 * x[:,1]) - a2 * x[:,0] * x[:,1]
_1 = K.expand_dims(_1, 1)
_2 = K.expand_dims(_2, 1)
_ = K.concatenate([_1, _2], 1)
step_out = x + self.h * _
return step_out, [step_out]
def call(self, inputs): # 这里的inputs就是初始条件
init_states = [inputs]
zeros = K.zeros((K.shape(inputs)[0],
self.steps,
K.shape(inputs)[1])) # 迭代过程用不着外部输入,所以
# 指定一个全零输入,只为形式上的传入
outputs = K.rnn(self.step_do, zeros, init_states) # 循环执行step_do函数
return outputs[1] # 这次我们输出整个结果序列
def compute_output_shape(self, input_shape):
return (input_shape[0], self.steps, input_shape[1])
from keras.models import Sequential
import numpy as np
import matplotlib.pyplot as plt
steps,h = 1000,0.1
M = Sequential()
M.add(ODE_RNN(steps, h, input_shape=(2,)))
M.summary()
# 直接前向传播就输出解了
result = M.predict(np.array([[100, 150]]))[0] # 以[100, 150]为初始条件进行演算
times = np.arange(1, steps+1) * h
# 绘图
plt.plot(times, result[:,0])
plt.plot(times, result[:,1])
plt.savefig('test.png')
整个过程很容易理解,只不过有两点需要指出一下。首先,由于方程组$(7)$只有两维,而且不容易写成矩阵运算,因此我在step_do函数中是直接逐位操作的(代码中的x[:,0],x[:,1]),如果方程本身维度较高,而且能写成矩阵运算,那么直接利用矩阵运算写会更加高效;然后,我们可以看到,写完整个模型之后,直接predict就输出结果了,不需要“训练”。
反推ODE参数 #
前一节的介绍也就是说,RNN的前向传播跟ODE的欧拉解法是对应的,那么反向传播又对应什么呢?
在实际问题中,有一类问题称为“模型推断”,它是在已知实验数据的基础上,猜测这批数据符合的模型(机理推断)。这类问题的做法大概分两步,第一步是猜测模型的形式,第二步是确定模型的参数。假定这批数据可以由一个ODE描述,并且这个ODE的形式已经知道了,那么就需要估计里边的参数。
如果能够用公式完全解出这个ODE,那么这就只是一个非常简单的回归问题罢了。但前面已经说过,多数ODE都没有公式解,所以数值方法就必须了。这其实就是ODE对应的RNN的反向传播所要做的事情:前向传播就是解ODE(RNN的预测过程),反向传播自然就是推断ODE的参数了(RNN的训练过程)。这是一个非常有趣的事实:ODE的参数推断是一个被研究得很充分的课题,然而在深度学习这里,只是RNN的一个最基本的应用罢了。
我们把刚才的例子的微分方程的解数据保存下来,然后只取几个点,看看能不能反推原来的微分方程出来,解数据为:
$$\begin{array}{c|ccccccc}
\hline
\text{时间} & 0 & 10 & 15 & 30 & 36 & 40 & 42\\
\hline
x_1 & 100 & 165 & 197 & 280 & 305 & 318 & 324\\
\hline
x_2 & 150 & 283 & 290 & 276 & 269 & 266 & 264\\
\hline
\end{array}$$
假设就已知这有限的点数据,然后假定方程$(7)$的形式,求方程的各个参数。我们修改一下前面的代码:
#! -*- coding: utf-8- -*-
from keras.layers import Layer
import keras.backend as K
def my_init(shape, dtype=None): # 需要定义好初始化,这相当于需要实验估计参数的量级
return K.variable([0.1, 0.1, 0.001, 0.001, 0.001, 0.001])
class ODE_RNN(Layer):
def __init__(self, steps, h, **kwargs):
self.steps = steps
self.h = h
super(ODE_RNN, self).__init__(**kwargs)
def build(self, input_shape): # 将原来的参数设为可训练的参数
self.kernel = self.add_weight(name='kernel',
shape=(6,),
initializer=my_init,
trainable=True)
def step_do(self, step_in, states): # 定义每一步的迭代
x = states[0]
r1,r2,a1,a2,iN1,iN2 = (self.kernel[0], self.kernel[1],
self.kernel[2], self.kernel[3],
self.kernel[4], self.kernel[5])
_1 = r1 * x[:,0] * (1 - iN1 * x[:,0]) - a1 * x[:,0] * x[:,1]
_2 = r2 * x[:,1] * (1 - iN2 * x[:,1]) - a2 * x[:,0] * x[:,1]
_1 = K.expand_dims(_1, 1)
_2 = K.expand_dims(_2, 1)
_ = K.concatenate([_1, _2], 1)
step_out = x + self.h * K.clip(_, -1e5, 1e5) # 防止梯度爆炸
return step_out, [step_out]
def call(self, inputs): # 这里的inputs就是初始条件
init_states = [inputs]
zeros = K.zeros((K.shape(inputs)[0],
self.steps,
K.shape(inputs)[1])) # 迭代过程用不着外部输入,所以
# 指定一个全零输入,只为形式上的传入
outputs = K.rnn(self.step_do, zeros, init_states) # 循环执行step_do函数
return outputs[1] # 这次我们输出整个结果序列
def compute_output_shape(self, input_shape):
return (input_shape[0], self.steps, input_shape[1])
from keras.models import Sequential
from keras.optimizers import Adam
import numpy as np
import matplotlib.pyplot as plt
steps,h = 50, 1 # 用大步长,减少步数,削弱长时依赖,也加快推断速度
series = {0: [100, 150],
10: [165, 283],
15: [197, 290],
30: [280, 276],
36: [305, 269],
40: [318, 266],
42: [324, 264]}
M = Sequential()
M.add(ODE_RNN(steps, h, input_shape=(2,)))
M.summary()
# 构建训练样本
# 其实就只有一个样本序列,X为初始条件,Y为后续时间序列
X = np.array([series[0]])
Y = np.zeros((1, steps, 2))
for i,j in series.items():
if i != 0:
Y[0, int(i/h)-1] += series[i]
# 自定义loss
# 在训练的时候,只考虑有数据的几个时刻,没有数据的时刻被忽略
def ode_loss(y_true, y_pred):
T = K.sum(K.abs(y_true), 2, keepdims=True)
T = K.cast(K.greater(T, 1e-3), 'float32')
return K.sum(T * K.square(y_true - y_pred), [1, 2])
M.compile(loss=ode_loss,
optimizer=Adam(1e-4))
M.fit(X, Y, epochs=10000) # 用低学习率训练足够多轮
# 用训练出来的模型重新预测,绘图,比较结果
result = M.predict(np.array([[100, 150]]))[0]
times = np.arange(1, steps+1) * h
plt.clf()
plt.plot(times, result[:,0], color='blue')
plt.plot(times, result[:,1], color='green')
plt.plot(series.keys(), [i[0] for i in series.values()], 'o', color='blue')
plt.plot(series.keys(), [i[1] for i in series.values()], 'o', color='green')
plt.savefig('test.png')
结果可以用一张图来看:
显然结果是让人满意的。
又到总结 #
本文在一个一般的框架下介绍了RNN模型及其在Keras下的自定义写法,然后揭示了ODE与RNN的联系。在此基础上,介绍了用RNN直接求解ODE以及用RNN反推ODE参数的基本思路。需要提醒读者的是,在RNN模型的反向传播中,要谨慎地做好初始化和截断处理处理,并且选择好学习率等,以防止梯度爆炸的出现(梯度消失只是优化得不够好,梯度爆炸则是直接崩溃了,解决梯度爆炸问题尤为重要)。
总之,梯度消失和梯度爆炸在RNN中是一个很经典的困难,事实上,LSTM、GRU等模型的引入,根本原因就是为了解决RNN的梯度消失问题,而梯度爆炸则是通过使用tanh或sigmoid激活函数来解决的。但是如果用RNN解决ODE的话,我们就没有选择激活函数的权利了(激活函数就是ODE的一部分),所以只能谨慎地做好初始化及其他处理。据说,只要谨慎做好初始化,普通RNN中用relu作为激活函数都是无妨的~
转载到请包括本文地址:https://www.kexue.fm/archives/5643
更详细的转载事宜请参考:《科学空间FAQ》
如果您还有什么疑惑或建议,欢迎在下方评论区继续讨论。
如果您觉得本文还不错,欢迎分享/打赏本文。打赏并非要从中获得收益,而是希望知道科学空间获得了多少读者的真心关注。当然,如果你无视它,也不会影响你的阅读。再次表示欢迎和感谢!
如果您需要引用本文,请参考:
苏剑林. (Jun. 23, 2018). 《貌离神合的RNN与ODE:花式RNN简介 》[Blog post]. Retrieved from https://www.kexue.fm/archives/5643
@online{kexuefm-5643,
title={貌离神合的RNN与ODE:花式RNN简介},
author={苏剑林},
year={2018},
month={Jun},
url={\url{https://www.kexue.fm/archives/5643}},
}
July 4th, 2018
相当新奇的想法,标记一下回头自信看。
July 11th, 2018
作者您好,ODE公式(4)和RNN公式(1)之间的联系,您说ODE是RNN的一个特例,能否给解释一下二者的联系之处?
整篇文章都是在回答你这个问题,请仔细看这篇文章。
August 6th, 2018
上大学以来看到的最有意思的东西,不行我要打赏
August 11th, 2018
代码不能运行,报错:
Traceback (most recent call last):
File "/usr/lib/python3/dist-packages/IPython/core/interactiveshell.py", line 2882, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "", line 2, in
M.add(ODE_RNN(steps, h, input_shape=(2,1)))
File "/usr/lib/python3/dist-packages/keras/models.py", line 464, in add
layer(x)
File "/usr/lib/python3/dist-packages/keras/engine/topology.py", line 603, in __call__
output = self.call(inputs, **kwargs)
File "", line 40, in call
zeros = K.zeros(dim) # 迭代过程用不着外部输入,所以
File "/usr/lib/python3/dist-packages/keras/backend/tensorflow_backend.py", line 675, in zeros
return variable(tf.constant_initializer(0., dtype=tf_dtype)(shape),
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/init_ops.py", line 217, in __call__
self.value, dtype=dtype, shape=shape, verify_shape=verify_shape)
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/constant_op.py", line 214, in constant
value, dtype=dtype, shape=shape, verify_shape=verify_shape))
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/tensor_util.py", line 430, in make_tensor_proto
if shape is not None and np.prod(shape, dtype=np.int64) == 0:
File "/usr/lib/python3/dist-packages/numpy/core/fromnumeric.py", line 2518, in prod
out=out, **kwargs)
File "/usr/lib/python3/dist-packages/numpy/core/_methods.py", line 35, in _prod
return umr_prod(a, axis, dtype, out, keepdims)
ValueError: setting an array element with a sequence.
keras.__version__
'2.1.1'
tensorflow.__version__(GPU 版本)
'1.6.0'
dim = (K.shape(inputs)[0], self.steps, K.shape(inputs)[1])
不是很清楚,可能是由于python2到python3的转换也说不准。我的环境python2.7+keras 2.1.5可以跑通
November 21st, 2018
很强
December 27th, 2018
求博主点评我写的https://www.jianshu.com/p/e8df1f56a118,我路子比较野,数学一般般,也不知道这个思路对不对,谢谢
rnn不是卷积。
发现了,谢谢
October 5th, 2019
根据https://arxiv.org/abs/1806.07366,欧拉解法也可以看做残差网络 h1=h0+g(h0),从而多层残差看做连续的ODE方程,苏神有兴趣解读下不
看过了,感觉没什么意思呢~
June 4th, 2021
作者你好,假如倒推ODE方程的话,是不是必须确保X1,X2都是已知的?
要不然什么叫做倒推?不就是已知$x_1,x_2$求方程的参数吗?
谢谢解答!
还有就是,我们反推得到的结果只是数值并绘图,但是无法具体写出最后的ODE方程啊?
怎么就没法了,你自己把ODE_RNN的kernel参数打印出来看看不就行了~
我刚入门,非常感谢您的解答!!
您好,请问kernel参数怎么打印出来呢
December 5th, 2021
Tensor("Placeholder:0", shape=(None, 2), dtype=float32)
Traceback (most recent call last):
File "E:\zuoye\huanyingshiyongtianqichaxun\RNN.py", line 67, in
M.add(ODE_RNN(steps, h, input_shape=(2,)))
File "E:\anaconda11.19\lib\site-packages\tensorflow\python\training\tracking\base.py", line 530, in _method_wrapper
result = method(self, *args, **kwargs)
File "E:\anaconda11.19\lib\site-packages\keras\utils\traceback_utils.py", line 67, in error_handler
raise e.with_traceback(filtered_tb) from None
File "E:\anaconda11.19\lib\site-packages\tensorflow\python\autograph\impl\api.py", line 699, in wrapper
raise e.ag_error_metadata.to_exception(e)
TypeError: Exception encountered when calling layer "ode_rnn_9" (type ODE_RNN).
in user code:
File "E:\zuoye\huanyingshiyongtianqichaxun\RNN.py", line 39, in call *
zeros = K.zeros((K.shape(inputs)[0],
File "E:\anaconda11.19\lib\site-packages\keras\backend.py", line 1576, in zeros **
v = tf.zeros(shape=shape, dtype=tf_dtype, name=name)
TypeError: Originated from a graph execution error.
The graph execution error is detected at a node built at (most recent call last):
File E:\anaconda11.19\lib\runpy.py, line 197, in _run_module_as_main
File E:\anaconda11.19\lib\runpy.py, line 87, in _run_code
File E:\anaconda11.19\lib\site-packages\spyder_kernels\console\__main__.py, line 23, in
File E:\anaconda11.19\lib\site-packages\spyder_kernels\console\start.py, line 328, in main
File E:\anaconda11.19\lib\site-packages\ipykernel\kernelapp.py, line 677, in start
File E:\anaconda11.19\lib\site-packages\tornado\platform\asyncio.py, line 199, in start
File E:\anaconda11.19\lib\asyncio\base_events.py, line 596, in run_forever
File E:\anaconda11.19\lib\asyncio\base_events.py, line 1890, in _run_once
File E:\anaconda11.19\lib\asyncio\events.py, line 80, in _run
File E:\anaconda11.19\lib\site-packages\ipykernel\kernelbase.py, line 457, in dispatch_queue
File E:\anaconda11.19\lib\site-packages\ipykernel\kernelbase.py, line 446, in process_one
File E:\anaconda11.19\lib\site-packages\ipykernel\kernelbase.py, line 353, in dispatch_shell
File E:\anaconda11.19\lib\site-packages\ipykernel\kernelbase.py, line 648, in execute_request
File E:\anaconda11.19\lib\site-packages\ipykernel\ipkernel.py, line 353, in do_execute
File E:\anaconda11.19\lib\site-packages\ipykernel\zmqshell.py, line 533, in run_cell
File E:\anaconda11.19\lib\site-packages\IPython\core\interactiveshell.py, line 2901, in run_cell
File E:\anaconda11.19\lib\site-packages\IPython\core\interactiveshell.py, line 2947, in _run_cell
File E:\anaconda11.19\lib\site-packages\IPython\core\async_helpers.py, line 68, in _pseudo_sync_runner
File E:\anaconda11.19\lib\site-packages\IPython\core\interactiveshell.py, line 3172, in run_cell_async
File E:\anaconda11.19\lib\site-packages\IPython\core\interactiveshell.py, line 3364, in run_ast_nodes
File E:\anaconda11.19\lib\site-packages\IPython\core\interactiveshell.py, line 3444, in run_code
File C:\Users\HP\AppData\Local\Temp/ipykernel_19192/2328460107.py, line 1, in
File E:\anaconda11.19\lib\site-packages\spyder_kernels\customize\spydercustomize.py, line 577, in runfile
File E:\anaconda11.19\lib\site-packages\spyder_kernels\customize\spydercustomize.py, line 465, in exec_code
File E:\zuoye\huanyingshiyongtianqichaxun\RNN.py, line 67, in
File E:\anaconda11.19\lib\site-packages\tensorflow\python\training\tracking\base.py, line 530, in _method_wrapper
File E:\anaconda11.19\lib\site-packages\keras\utils\traceback_utils.py, line 64, in error_handler
File E:\anaconda11.19\lib\site-packages\keras\engine\sequential.py, line 205, in add
File E:\anaconda11.19\lib\site-packages\keras\utils\traceback_utils.py, line 64, in error_handler
File E:\anaconda11.19\lib\site-packages\keras\engine\base_layer.py, line 1019, in __call__
File E:\anaconda11.19\lib\site-packages\keras\engine\base_layer.py, line 1160, in _functional_construction_call
File E:\anaconda11.19\lib\site-packages\keras\engine\base_layer.py, line 885, in _keras_tensor_symbolic_call
File E:\anaconda11.19\lib\site-packages\keras\engine\base_layer.py, line 930, in _infer_output_signature
File E:\anaconda11.19\lib\site-packages\keras\utils\traceback_utils.py, line 92, in error_handler
File E:\zuoye\huanyingshiyongtianqichaxun\RNN.py, line 39, in call
File E:\anaconda11.19\lib\site-packages\tensorflow\python\util\traceback_utils.py, line 150, in error_handler
File E:\anaconda11.19\lib\site-packages\tensorflow\python\util\dispatch.py, line 1096, in op_dispatch_handler
File E:\anaconda11.19\lib\site-packages\tensorflow\python\ops\array_ops.py, line 1042, in _slice_helper
File E:\anaconda11.19\lib\site-packages\tensorflow\python\util\traceback_utils.py, line 150, in error_handler
File E:\anaconda11.19\lib\site-packages\tensorflow\python\util\dispatch.py, line 1096, in op_dispatch_handler
File E:\anaconda11.19\lib\site-packages\tensorflow\python\ops\array_ops.py, line 1215, in strided_slice
File E:\anaconda11.19\lib\site-packages\tensorflow\python\ops\gen_array_ops.py, line 10697, in strided_slice
File E:\anaconda11.19\lib\site-packages\tensorflow\python\framework\op_def_library.py, line 744, in _apply_op_helper
File E:\anaconda11.19\lib\site-packages\tensorflow\python\framework\func_graph.py, line 689, in _create_op_internal
File E:\anaconda11.19\lib\site-packages\tensorflow\python\framework\ops.py, line 3697, in _create_op_internal
File E:\anaconda11.19\lib\site-packages\tensorflow\python\framework\ops.py, line 2101, in __init__
Error detected in node 'ode_rnn_9/strided_slice' defined at: File "E:\zuoye\huanyingshiyongtianqichaxun\RNN.py", line 39, in call
TypeError: tf.Graph captured an external symbolic tensor. The symbolic tensor 'ode_rnn_9/strided_slice:0' created by node 'ode_rnn_9/strided_slice' is captured by the tf.Graph being executed as an input. But a tf.Graph is not allowed to take symbolic tensors from another graph as its inputs. Make sure all captured inputs of the executing tf.Graph are not symbolic tensors. Use return values, explicit Python locals or TensorFlow collections to access it. Please see https://www.tensorflow.org/guide/function#all_outputs_of_a_tffunction_must_be_return_values for more information.
Call arguments received:
• inputs=tf.Tensor(shape=(None, 2), dtype=float32)
runfile('E:/zuoye/huanyingshiyongtianqichaxun/RNN.py', wdir='E:/zuoye/huanyingshiyongtianqichaxun')
Reloaded modules: __autograph_generated_fileeeu9efck
Traceback (most recent call last):
File "E:\zuoye\huanyingshiyongtianqichaxun\RNN.py", line 66, in
M.add(ODE_RNN(steps, h, input_shape=(2,)))
File "E:\anaconda11.19\lib\site-packages\tensorflow\python\training\tracking\base.py", line 530, in _method_wrapper
result = method(self, *args, **kwargs)
File "E:\anaconda11.19\lib\site-packages\keras\utils\traceback_utils.py", line 67, in error_handler
raise e.with_traceback(filtered_tb) from None
File "E:\anaconda11.19\lib\site-packages\tensorflow\python\autograph\impl\api.py", line 699, in wrapper
raise e.ag_error_metadata.to_exception(e)
TypeError: Exception encountered when calling layer "ode_rnn_10" (type ODE_RNN).
in user code:
File "E:\zuoye\huanyingshiyongtianqichaxun\RNN.py", line 38, in call *
zeros = K.zeros((K.shape(input)[0],
File "E:\anaconda11.19\lib\site-packages\keras\backend.py", line 1576, in zeros **
v = tf.zeros(shape=shape, dtype=tf_dtype, name=name)
TypeError: Originated from a graph execution error.
The graph execution error is detected at a node built at (most recent call last):
File E:\anaconda11.19\lib\runpy.py, line 197, in _run_module_as_main
File E:\anaconda11.19\lib\runpy.py, line 87, in _run_code
File E:\anaconda11.19\lib\site-packages\spyder_kernels\console\__main__.py, line 23, in
File E:\anaconda11.19\lib\site-packages\spyder_kernels\console\start.py, line 328, in main
File E:\anaconda11.19\lib\site-packages\ipykernel\kernelapp.py, line 677, in start
File E:\anaconda11.19\lib\site-packages\tornado\platform\asyncio.py, line 199, in start
File E:\anaconda11.19\lib\asyncio\base_events.py, line 596, in run_forever
File E:\anaconda11.19\lib\asyncio\base_events.py, line 1890, in _run_once
File E:\anaconda11.19\lib\asyncio\events.py, line 80, in _run
File E:\anaconda11.19\lib\site-packages\ipykernel\kernelbase.py, line 457, in dispatch_queue
File E:\anaconda11.19\lib\site-packages\ipykernel\kernelbase.py, line 446, in process_one
File E:\anaconda11.19\lib\site-packages\ipykernel\kernelbase.py, line 353, in dispatch_shell
File E:\anaconda11.19\lib\site-packages\ipykernel\kernelbase.py, line 648, in execute_request
File E:\anaconda11.19\lib\site-packages\ipykernel\ipkernel.py, line 353, in do_execute
File E:\anaconda11.19\lib\site-packages\ipykernel\zmqshell.py, line 533, in run_cell
File E:\anaconda11.19\lib\site-packages\IPython\core\interactiveshell.py, line 2901, in run_cell
File E:\anaconda11.19\lib\site-packages\IPython\core\interactiveshell.py, line 2947, in _run_cell
File E:\anaconda11.19\lib\site-packages\IPython\core\async_helpers.py, line 68, in _pseudo_sync_runner
File E:\anaconda11.19\lib\site-packages\IPython\core\interactiveshell.py, line 3172, in run_cell_async
File E:\anaconda11.19\lib\site-packages\IPython\core\interactiveshell.py, line 3364, in run_ast_nodes
File E:\anaconda11.19\lib\site-packages\IPython\core\interactiveshell.py, line 3444, in run_code
File C:\Users\HP\AppData\Local\Temp/ipykernel_19192/2328460107.py, line 1, in
File E:\anaconda11.19\lib\site-packages\spyder_kernels\customize\spydercustomize.py, line 577, in runfile
File E:\anaconda11.19\lib\site-packages\spyder_kernels\customize\spydercustomize.py, line 465, in exec_code
File E:\zuoye\huanyingshiyongtianqichaxun\RNN.py, line 66, in
File E:\anaconda11.19\lib\site-packages\tensorflow\python\training\tracking\base.py, line 530, in _method_wrapper
File E:\anaconda11.19\lib\site-packages\keras\utils\traceback_utils.py, line 64, in error_handler
File E:\anaconda11.19\lib\site-packages\keras\engine\sequential.py, line 205, in add
File E:\anaconda11.19\lib\site-packages\keras\utils\traceback_utils.py, line 64, in error_handler
File E:\anaconda11.19\lib\site-packages\keras\engine\base_layer.py, line 1019, in __call__
File E:\anaconda11.19\lib\site-packages\keras\engine\base_layer.py, line 1160, in _functional_construction_call
File E:\anaconda11.19\lib\site-packages\keras\engine\base_layer.py, line 885, in _keras_tensor_symbolic_call
File E:\anaconda11.19\lib\site-packages\keras\engine\base_layer.py, line 930, in _infer_output_signature
File E:\anaconda11.19\lib\site-packages\keras\utils\traceback_utils.py, line 92, in error_handler
File E:\zuoye\huanyingshiyongtianqichaxun\RNN.py, line 38, in call
File E:\anaconda11.19\lib\site-packages\tensorflow\python\util\traceback_utils.py, line 150, in error_handler
File E:\anaconda11.19\lib\site-packages\tensorflow\python\util\dispatch.py, line 1096, in op_dispatch_handler
File E:\anaconda11.19\lib\site-packages\tensorflow\python\ops\array_ops.py, line 1042, in _slice_helper
File E:\anaconda11.19\lib\site-packages\tensorflow\python\util\traceback_utils.py, line 150, in error_handler
File E:\anaconda11.19\lib\site-packages\tensorflow\python\util\dispatch.py, line 1096, in op_dispatch_handler
File E:\anaconda11.19\lib\site-packages\tensorflow\python\ops\array_ops.py, line 1215, in strided_slice
File E:\anaconda11.19\lib\site-packages\tensorflow\python\ops\gen_array_ops.py, line 10697, in strided_slice
File E:\anaconda11.19\lib\site-packages\tensorflow\python\framework\op_def_library.py, line 744, in _apply_op_helper
File E:\anaconda11.19\lib\site-packages\tensorflow\python\framework\func_graph.py, line 689, in _create_op_internal
File E:\anaconda11.19\lib\site-packages\tensorflow\python\framework\ops.py, line 3697, in _create_op_internal
File E:\anaconda11.19\lib\site-packages\tensorflow\python\framework\ops.py, line 2101, in __init__
Error detected in node 'ode_rnn_10/strided_slice' defined at: File "E:\zuoye\huanyingshiyongtianqichaxun\RNN.py", line 38, in call
TypeError: tf.Graph captured an external symbolic tensor. The symbolic tensor 'ode_rnn_10/strided_slice:0' created by node 'ode_rnn_10/strided_slice' is captured by the tf.Graph being executed as an input. But a tf.Graph is not allowed to take symbolic tensors from another graph as its inputs. Make sure all captured inputs of the executing tf.Graph are not symbolic tensors. Use return values, explicit Python locals or TensorFlow collections to access it. Please see https://www.tensorflow.org/guide/function#all_outputs_of_a_tffunction_must_be_return_values for more information.
Call arguments received:
• input=tf.Tensor(shape=(None, 2), dtype=float32)
有错了啊,怎么解决,求解答
看不出~
September 22nd, 2022
作者您好,请问这种自定义层的参数如何导出呢,我在网上找到的代码虽然能运行,但是导出的参数只有训练前的