2 Jan

为什么梯度裁剪的默认模长是1?

我们知道,梯度裁剪(Gradient Clipping)是让模型训练更加平稳的常用技巧。常用的梯度裁剪是根据所有参数的梯度总模长来对梯度进行裁剪,其运算可以表示为
\begin{equation}\text{clip}(\boldsymbol{g},\tau)=\left\{\begin{aligned}&\boldsymbol{g}, &\Vert\boldsymbol{g}\Vert\leq \tau \\
&\frac{\tau}{\Vert\boldsymbol{g}\Vert}\boldsymbol{g},&\Vert\boldsymbol{g}\Vert > \tau
\end{aligned}\right.\end{equation}
这样一来,$\text{clip}(\boldsymbol{g},\tau)$保持跟$\boldsymbol{g}$相同的方向,但模长不超过$\tau$。注意这里的$\Vert\boldsymbol{g}\Vert$是整个模型所有的参数梯度放在一起视为单个向量所算的模长,也就是所谓的Global Gradient Norm。

不知道大家有没有留意到一个细节:不管是数百万参数还是数百亿参数的模型,$\tau$的取值在很多时候都是1。这意味着什么呢?是单纯地复用默认值,还是背后隐含着什么深刻的原理呢?

点击阅读全文...

25 Dec

从谱范数梯度到新式权重衰减的思考

在文章《Muon优化器赏析:从向量到矩阵的本质跨越》中,我们介绍了一个名为“Muon”的新优化器,其中一个理解视角是作为谱范数正则下的最速梯度下降,这似乎揭示了矩阵参数的更本质的优化方向。众所周知,对于矩阵参数我们经常也会加权重衰减(Weight Decay),它可以理解为$F$范数平方的梯度,那么从Muon的视角看,通过谱范数平方的梯度来构建新的权重衰减,会不会能起到更好的效果呢?

那么问题来了,谱范数的梯度或者说导数长啥样呢?用它来设计的新权重衰减又是什么样的?接下来我们围绕这些问题展开。

基础回顾

谱范数(Spectral Norm),又称“$2$范数”,是最常用的矩阵范数之一,相比更简单的$F$范数(Frobenius Norm),它往往能揭示一些与矩阵乘法相关的更本质的信号,这是因为它定义上就跟矩阵乘法相关:对于矩阵参数$\boldsymbol{W}\in\mathbb{R}^{n\times m}$,它的谱范数定义为

点击阅读全文...

18 Dec

书接上文,在《生成扩散模型漫谈(二十七):将步长作为条件输入》中,我们介绍了加速采样的Shortcut模型,其对比的模型之一就是“一致性模型(Consistency Models)”。事实上,早在《生成扩散模型漫谈(十七):构建ODE的一般步骤(下)》介绍ReFlow时,就有读者提到了一致性模型,但笔者总感觉它更像是实践上的Trick,理论方面略显单薄,所以兴趣寥寥。

不过,既然我们开始关注扩散模型加速采样方面的进展,那么一致性模型就是一个绕不开的工作。因此,趁着这个机会,笔者在这里分享一下自己对一致性模型的理解。

熟悉配方

还是熟悉的配方,我们的出发点依旧是ReFlow,因为它大概是ODE式扩散最简单的理解方式。设$\boldsymbol{x}_0\sim p_0(\boldsymbol{x}_0)$是目标分布的真实样本,$\boldsymbol{x}_1\sim p_1(\boldsymbol{x}_1)$是先验分布的随机噪声,$\boldsymbol{x}_t = (1-t)\boldsymbol{x}_0 + t\boldsymbol{x}_1$是加噪样本,那么ReFlow的训练目标是:

点击阅读全文...

15 Dec

这篇文章我们再次聚焦于扩散模型的采样加速。众所周知,扩散模型的采样加速主要有两种思路,一是开发更高效的求解器,二是事后蒸馏。然而,据笔者观察,除了上两篇文章介绍过的SiD外,这两种方案都鲜有能将生成步数降低到一步的结果。虽然SiD能做到单步生成,但它需要额外的蒸馏成本,并且蒸馏过程中用到了类似GAN的交替训练过程,总让人感觉差点意思。

本文要介绍的是《One Step Diffusion via Shortcut Models》,其突破性思想是将生成步长也作为扩散模型的条件输入,然后往训练目标中加入了一个直观的正则项,这样就能直接稳定训练出可以单步生成模型,可谓简单有效的经典之作。

ODE扩散

原论文的结论是基于ODE式扩散模型的,而对于ODE式扩散的理论基础,我们在本系列的(六)(十二)(十四)(十五)(十七)等博客中已经多次介绍,其中最简单的一种理解方式大概是(十七)中的ReFlow视角,下面我们简单重复一下。

点击阅读全文...

10 Dec

Muon优化器赏析:从向量到矩阵的本质跨越

随着LLM时代的到来,学术界对于优化器的研究热情似乎有所减退。这主要是因为目前主流的AdamW已经能够满足大多数需求,而如果对优化器“大动干戈”,那么需要巨大的验证成本。因此,当前优化器的变化,多数都只是工业界根据自己的训练经验来对AdamW打的一些小补丁。

不过,最近推特上一个名为“Muon”的优化器颇为热闹,它声称比AdamW更为高效,且并不只是在Adam基础上的“小打小闹”,而是体现了关于向量与矩阵差异的一些值得深思的原理。本文让我们一起赏析一番。

Muon与AdamW效果对比(来源:推特@Yuchenj_UW)

Muon与AdamW效果对比(来源:推特@Yuchenj_UW)

点击阅读全文...

22 Nov

继续回到我们的扩散系列。在《生成扩散模型漫谈(二十五):基于恒等式的蒸馏(上)》中,我们介绍了SiD(Score identity Distillation),这是一种不需要真实数据、也不需要从教师模型采样的扩散模型蒸馏方案,其形式类似GAN,但有着比GAN更好的训练稳定性。

SiD的核心是通过恒等变换来为学生模型构建更好的损失函数,这一点是开创性的,同时也遗留了一些问题。比如,SiD对损失函数的恒等变换是不完全的,如果完全变换会如何?如何从理论上解释SiD引入的$\lambda$的必要性?上个月放出的《Flow Generator Matching》(简称FGM)成功从更本质的梯度角度解释了$\lambda=0.5$的选择,而受到FGM启发,笔者则进一步发现了$\lambda = 1$的一种解释。

接下来我们将详细介绍SiD的上述理论进展。

点击阅读全文...

18 Nov

Adam的epsilon如何影响学习率的Scaling Law?

上一篇文章《当Batch Size增大时,学习率该如何随之变化?》我们从多个角度讨论了学习率与Batch Size之间的缩放规律,其中对于Adam优化器我们采用了SignSGD近似,这是分析Adam优化器常用的手段。那么一个很自然的问题就是:用SignSGD来近似Adam究竟有多科学呢?

我们知道,Adam优化器的更新量分母会带有一个$\epsilon$,初衷是预防除零错误,所以其值通常很接近于零,以至于我们做理论分析的时候通常选择忽略掉它。然而,当前LLM的训练尤其是低精度训练,我们往往会选择偏大的$\epsilon$,这导致在训练的中、后期$\epsilon$往往已经超过梯度平方大小,所以$\epsilon$的存在事实上已经不可忽略。

因此,这篇文章我们试图探索$\epsilon$如何影响Adam的学习率与Batch Size的Scaling Law,为相关问题提供一个参考的计算方案。

点击阅读全文...

14 Nov

当Batch Size增大时,学习率该如何随之变化?

随着算力的飞速进步,有越多越多的场景希望能够实现“算力换时间”,即通过堆砌算力来缩短模型训练时间。理想情况下,我们希望投入$n$倍的算力,那么达到同样效果的时间则缩短为$1/n$,此时总的算力成本是一致的。这个“希望”看上去很合理和自然,但实际上并不平凡,即便我们不考虑通信之类的瓶颈,当算力超过一定规模或者模型小于一定规模时,增加算力往往只能增大Batch Size。然而,增大Batch Size一定可以缩短训练时间并保持效果不变吗?

这就是接下来我们要讨论的话题:当Batch Size增大时,各种超参数尤其是学习率该如何调整,才能保持原本的训练效果并最大化训练效率?我们也可以称之为Batch Size与学习率之间的Scaling Law。

方差视角

直觉上,当Batch Size增大时,每个Batch的梯度将会更准,所以步子就可以迈大一点,也就是增大学习率,以求更快达到终点,缩短训练时间,这一点大体上都能想到。问题就是,增大多少才是最合适的呢?

点击阅读全文...