生成扩散模型漫谈(三十一):预测数据而非噪声
By 苏剑林 | 2025-11-24 | 12773位读者 | 引用时至今日,LDM(Latent Diffusion Models)依旧是扩散模型的主流范式。借助Encoder对原始图像进行高倍压缩,LDM能显著减少训练与推理的计算成本,同时还能降低训难度,可谓一举多得。然而,高倍压缩也意味着信息损失,而且“压缩、生成、解压缩”的流水线也少了些端到端的美感。因此,始终有一部分人执着于“回到像素空间”,希望让扩散模型直接在原始数据上完成生成。
本文要介绍的《Back to Basics: Let Denoising Generative Models Denoise》正是这一思路的新工作,它基于原始数据往往处于低维子流形这一事实,提出模型应预测数据而不是噪声,由此得到“JiT(Just image Transformers)”,显著地简化了像素空间的扩散模型架构。
信噪之比
毋庸置疑,当今扩散模型的“主力军”依然是LDM,即便是前段时间颇为热闹的RAE,也只是声称LDM的Encoder已经“过时”了,要给它换一个新的更强的Encoder,但依然没改变“先压缩后生成”这一模式。
Muon优化器指南:快速上手与关键细节
By 苏剑林 | 2025-11-19 | 12862位读者 | 引用这段时间,相信很多读者已经刷到过Muon优化器的相关消息。实际上,Muon的提出时间大致是去年的10月份,由 Keller Jordan 在推特上提出,距今也不过一年多一点。然而,就在这一年里,Muon已经经历了百亿、千亿乃至万亿参数模型的训练考验,足以表明它是一个相当有竞争力的优化器。
如今,Muon已经内置在Torch、Keras等训练框架中,就连Megatron这样的大型框架也逐渐开始支持,这意味它已经获得了业界的普遍认可。不过,对于仅熟悉Adam的读者来说,如何快速有效地切换到Muon,可能依然是一件让人困惑的事情。所以,本文试图给出一个快速上手教程。
简要介绍
Muon的正式提出者是 Keller Jordan ,目前任职于OpenAI。开头说了,Muon最早发表在推特上,而直到现在,作者也只是多写了篇博客《Muon: An optimizer for hidden layers in neural networks》而不是一篇Paper,作者的观点是“是否写成Paper,跟优化器是否有效,没有任何关系[原文]”。
低精度Attention可能存在有偏的舍入误差
By 苏剑林 | 2025-10-27 | 21709位读者 | 引用前段时间笔者在arXiv上刷到了论文《Why Low-Precision Transformer Training Fails: An Analysis on Flash Attention》,里面描述的实验现象跟我们在训练Kimi K2时出现的一些现象很吻合,比如都是第二层Attention开始出现问题。论文将其归因为低精度Attention固有的有偏误差,这个分析角度是比较出乎笔者意料的,所以饶有兴致地阅读了一番。
然而,论文的表述似乎比较让人费解——当然也有笔者本就不大熟悉低精度运算的原因。总之,经过多次向作者请教后,笔者才勉强看懂论文,遂将自己的理解记录在此,供大家参考。
结论简述
要指出的是,论文标题虽然点名了“Flash Attention”,但按照论文的描述,即便block_size取到训练长度那么大,相同的问题依然会出现,所以Flash Attention的分块计算并不是引起问题的原因,因此我们可以按照朴素的低精度Attention实现来简化分析。
MuP之上:1. 好模型的三个特征
By 苏剑林 | 2025-10-21 | 17630位读者 | 引用不知道大家有没有发现一个有趣的细节,Muon和MuP都是“Mu”开头,但两个“Mu”的原意完全不一样,前者是“MomentUm Orthogonalized by Newton-Schulz”,后者是“Maximal Update Parametrization”,可它们俩之间确实有着非常深刻的联系。也就是说,Muon和MuP有着截然不同的出发点,但最终都走向了相同的方向,甚至无意间取了相似的名字,似乎真应了那句“冥冥中自有安排”。
言归正传。总之,笔者在各种机缘巧合之下,刚好同时学习到了Muon和MuP,这大大加深了笔者对模型优化的理解,同时也让笔者开始思考关于模型优化更本质的原理。经过一段时间的试错,算是有些粗浅的收获,在此跟大家分享一下。
写在前面
按照提出时间的先后顺序,是先有MuP再有Muon,但笔者的学习顺序正好反过来,先学习了Muon然后再学习MuP,事后来看,这也不失为一个不错的学习顺序。
DiVeQ:一种非常简洁的VQ训练方案
By 苏剑林 | 2025-10-08 | 28537位读者 | 引用对于坚持离散化路线的研究人员来说,VQ(Vector Quantization)是视觉理解和生成的关键部分,担任着视觉中的“Tokenizer”的角色。它提出在2017年的论文《Neural Discrete Representation Learning》,笔者在2019年的博客《VQ-VAE的简明介绍:量子化自编码器》也介绍过它。
然而,这么多年过去了,我们可以发现VQ的训练技术几乎没有变化,都是STE(Straight-Through Estimator)加额外的Aux Loss。STE倒是没啥问题,它可以说是给离散化运算设计梯度的标准方式了,但Aux Loss的存在总让人有种不够端到端的感觉,同时还引入了额外的超参要调。
幸运的是,这个局面可能要结束了,上周的论文《DiVeQ: Differentiable Vector Quantization Using the Reparameterization Trick》提出了一个新的STE技巧,它最大亮点是不需要Aux Loss,这让它显得特别简洁漂亮!
为什么线性注意力要加Short Conv?
By 苏剑林 | 2025-10-05 | 36960位读者 | 引用如果读者有关注模型架构方面的进展,那么就会发现,比较新的线性Attention(参考《线性注意力简史:从模仿、创新到反哺》)模型都给$\boldsymbol{Q},\boldsymbol{K},\boldsymbol{V}$加上了Short Conv,比如下图所示的DeltaNet:
为什么要加这个Short Conv呢?直观理解可能是增加模型深度、增强模型的Token-Mixing能力等,说白了就是补偿线性化导致的表达能力下降。这个说法当然是大差不差,但它属于“万能模版”式的回答,我们更想对它的生效机制有更准确的认知。
接下来,笔者将给出自己的一个理解(更准确说应该是猜测)。
Cool Papers更新:简单适配Zotero Connector
By 苏剑林 | 2025-08-25 | 26516位读者 | 引用很早之前就有读者提出希望可以给Cool Papers增加导入Zotero的功能,但由于笔者没用Zotero,加上又比较懒,所以一直没提上日程。这个周末刚好有点时间,研究了一下,做了个简单的适配。
单篇导入
首先,我们需要安装Zotero(这是废话),然后需要给所用浏览器安装Zotero Connector插件。安装完成后,我们访问Cool Papers的单篇论文页面,如 https://papers.cool/arxiv/2104.09864 或 https://papers.cool/venue/2024.naacl-long.431@ACL ,然后点击Zotero Connector的图标,就会自动把论文导入了,包括PDF文件。











最近评论