《向量》系列——2.曲率半径
By 苏剑林 | 2010-07-18 | 55405位读者 |圆周是如此地和谐与完美,致使数学家和物理学家对它钟爱有加。几何上可以把一条曲线的局部看做一个圆弧,利用圆的性质去研究它(在数学上,曲率半径的倒数就是曲率,曲率越大,曲线越弯曲);物理学家喜欢把一个质点的曲线运动轨迹的局部看做圆周运动,利用圆周运动的方法来描述这种运动。这两种研究方法都告诉了我们,两种不同的“线”在极小的范围内可以等效的,这也为我们对科学进行探究提供了一点指导思想:把未知变已知,以已知看未知。物理学和数学的两种处理方法中,有一点是殊途同归的:那就是看轨迹看成一个圆后,圆的半径是多少?我们首先得求出它。
在数学分析上可以利用微积分的相关知识来推导曲率半径公式,而BoJone则更偏爱物理方法,通过物理和向量知识的结合,推导出曲率半径公式,让BoJone感到“别有一番风味”。
推导1:
首先来考虑二维的情况。我们知道向心加速度公式为$a_c=\frac{v^2}{R}$,如果我们可以知道向心加速度和速度,就可以求出R(曲率半径)。对于任意给出一个运动方程$\vec{r}=\vec{r}(t)$,那么速度我们已经知道了,$\vec{v}=\dot{\vec{r}}$。剩下的未知量是向心加速度。
何为“向心”?其实就是加速度在该点所在的圆的半径的投影。我们知道,圆周运动的速度方向总是与半径方向垂直,所以“向心”的方向其实就是与速度垂直的方向(这也叫做“法(线)向”,所以向心加速度也叫“法向加速度”)。
$$\vec{a}=\ddot{\vec{r}},|a_c|=|\vec{a}|\cdot \sin\theta=|\dot{\vec{r}}\times \ddot{\vec{r}}|\div |\dot{\vec{r}}|$$
因此$R=\frac{v^2}{a_c}=\frac{|\dot{\vec{r}}|^3}{|\dot{\vec{r}}\times \ddot{\vec{r}}|}$
令$\vec{r}=(x,y,0)$,则有
$$\begin{aligned}\dot{\vec{r}}=(\dot{x},\dot{y},0),\ddot{\vec{r}}=(\ddot{x},\ddot{y},0) \\ \dot{\vec{r}}\times \ddot{\vec{r}}=(0,0,\dot{x}\ddot{y}-\dot{y}\ddot{x})\end{aligned}$$
代入有:$R=\frac{(\dot{x}^2+\dot{y}^2)^(3//2)}{|\dot{x}\ddot{y}-\dot{y}\ddot{x}|}$
如果采取三维坐标代入,可以得到三维空间曲线的曲率半径:
$$R=\frac{(x'^2+y'^2+z'^2)^{3//2}}{\sqrt{(z''y'-y''z')^2+(x''z'-z''x')^2+(y''x'-x''y')^2}}$$
推导2:
在这里我们得到了关于圆周运动的两条方程
$$\vec{R}\cdot \dot{\vec{r}}=0\tag{1}$$$$\dot{\vec{r}}^2+\vec{R}\cdot \ddot{\vec{r}}=0\tag{2}$$
同样令$\vec{r}=(x,y),\vec{R}=(a,b)$,代入得到
$$\dot{x}^2+\dot{y}^2+a\ddot{x}+b\ddot{y}=0;a\dot{x}+b\dot{y}=0$$
可以解出
$$\begin{aligned}a=-\frac{\dot{x}^2\dot{y}+\dot{y}^3}{\ddot{x}\dot{y}-\dot{x}\ddot{y}} \\ b=\frac{\dot{y}^2\dot{x}+\dot{x}^3}{\ddot{x}\dot{y}-\dot{x}\ddot{y}}\end{aligned}$$
$R=\sqrt{a^2+b^2}=\frac{(\dot{x}^2+\dot{y}^2)^(3//2)}{|\dot{x}\ddot{y}-\dot{y}\ddot{x}|}$
转载到请包括本文地址:https://www.kexue.fm/archives/714
更详细的转载事宜请参考:《科学空间FAQ》
如果您还有什么疑惑或建议,欢迎在下方评论区继续讨论。
如果您觉得本文还不错,欢迎分享/打赏本文。打赏并非要从中获得收益,而是希望知道科学空间获得了多少读者的真心关注。当然,如果你无视它,也不会影响你的阅读。再次表示欢迎和感谢!
如果您需要引用本文,请参考:
苏剑林. (Jul. 18, 2010). 《《向量》系列——2.曲率半径 》[Blog post]. Retrieved from https://www.kexue.fm/archives/714
@online{kexuefm-714,
title={《向量》系列——2.曲率半径},
author={苏剑林},
year={2010},
month={Jul},
url={\url{https://www.kexue.fm/archives/714}},
}
July 19th, 2010
向量积还没学
可以查阅一下课外书,自学一下。学习向量是很有趣的...
April 30th, 2014
那个推导二的(2)是不是对(1)求导呢。。那向量R的导数就等于向量r的导数么。。。怎么前面是个平方呢。。。?
$\vec{r}$是运动轨迹,$\vec{R}$是把该点处的运动近似看成是圆周运动时,圆周的半径向量(径向向量)。第一个式子$\vec{R}\cdot\dot{\vec{r}}=0$表明,圆周运动的半径向量总是和速度垂直,第二个式子确实是对第一个式子求导,$\vec{R}\neq\vec{r}$,但是$\dot{\vec{R}}=\dot{\vec{r}}$,因为我们已经说了,$\vec{R}$是把这一小段的运动看成是圆周运动的半径向量,$\dot{\vec{R}}$就是速度了。