矩阵r次方根和逆r次方根的高效计算
By 苏剑林 | 2025-07-21 | 16369位读者 | 引用上一篇文章《矩阵平方根和逆平方根的高效计算》中,笔者从$\newcommand{mcsgn}{\mathop{\text{mcsgn}}}\mcsgn$算子出发,提出了一种很漂亮的矩阵平方根和逆平方根的计算方法。比较神奇的是,该方案经过化简之后,最终公式已经看不到最初$\mcsgn$形式的样子。这不禁引发了更深层的思考:该方案更本质的工作原理是什么?是否有推广到任意$r$次方根的可能性?
沿着这个角度进行分析后,笔者惊喜地发现,我们可以从一个更简单的角度去理解之前的迭代算法,并且在新角度下可以很轻松推广到任意$r$次方根和逆$r$次方根的计算。接下来我们将分享这一过程。
前情回顾
设$\boldsymbol{G}\in\mathbb{R}^{m\times n}$是任意矩阵,$\boldsymbol{P}\in\mathbb{R}^{n\times n}$是任意特征值都在$[0,1]$内的矩阵,上一篇文章给出:
\begin{gather}
\boldsymbol{G}_0 = \boldsymbol{G}, \quad \boldsymbol{P}_0 = \boldsymbol{P} \notag\\[6pt]
\boldsymbol{G}_{t+1} = \boldsymbol{G}_t(a_{t+1}\boldsymbol{I} + b_{t+1}\boldsymbol{P}_t + c_{t+1}\boldsymbol{P}_t^2) \label{eq:r2-rsqrt}\\[6pt]
\boldsymbol{P}_{t+1} = (a_{t+1}\boldsymbol{I} + b_{t+1}\boldsymbol{P}_t + c_{t+1}\boldsymbol{P}_t^2)^2\boldsymbol{P}_t \label{eq:r3-rsqrt}\\[6pt]
\lim_{t\to\infty} \boldsymbol{G}_t = \boldsymbol{G}\boldsymbol{P}^{-1/2}\notag
\end{gather}
矩阵平方根和逆平方根的高效计算
By 苏剑林 | 2025-07-19 | 19936位读者 | 引用设$\boldsymbol{P}\in\mathbb{R}^{n\times n}$是一个特征值都是非负实数的$n$阶方阵,本文来讨论它的平方根$\boldsymbol{P}^{1/2}$和逆平方根$\boldsymbol{P}^{-1/2}$的计算。
基本概念
矩阵$\boldsymbol{P}$的平方根,指的是满足$\boldsymbol{X}^2=\boldsymbol{P}$的矩阵$\boldsymbol{X}$。我们知道正数都有两个平方根,因此不难想象矩阵平方根一般也不唯一。不过,“算术平方根”是唯一的,一个正数的算术平方根是正的那个平方根,类似地,我们将$\boldsymbol{P}$的特征值全是非负数的那个平方根称为算术平方根。本文要求的矩阵平方根,默认都是指算术平方根。
矩阵符号函数mcsgn能计算什么?
By 苏剑林 | 2025-06-23 | 15082位读者 | 引用在《msign的导数》一文中,我们正式引入了两种矩阵符号函数$\newcommand{msign}{\mathop{\text{msign}}}\msign$和$\newcommand{mcsgn}{\mathop{\text{mcsgn}}}\mcsgn$,其中$\msign$是Muon的核心运算,而$\mcsgn$则是用来解Sylvester方程。那么$\mcsgn$除了用来解Sylvester方程外,还能干些什么呢?本文就来整理一下这个问题的答案。
两种符号
设矩阵$\boldsymbol{M}\in\mathbb{R}^{n\times m}$,我们有两种矩阵符号函数
\begin{gather}\msign(\boldsymbol{M}) = (\boldsymbol{M}\boldsymbol{M}^{\top})^{-1/2}\boldsymbol{M}= \boldsymbol{M}(\boldsymbol{M}^{\top}\boldsymbol{M})^{-1/2} \\[6pt]
\mcsgn(\boldsymbol{M}) = (\boldsymbol{M}^2)^{-1/2}\boldsymbol{M}= \boldsymbol{M}(\boldsymbol{M}^2)^{-1/2}
\end{gather}
《交换代数导引》参考答案
By 苏剑林 | 2017-07-03 | 42244位读者 | 引用这学期我们的一门课是《交换代数》,是本科抽象代数的升级版。我们用的教材是Atiyah的《Introduction to Commutative Algebra》(交换代数导引),而且根据老师的上课安排,还需要我们把部分课后习题完成并讲解...不得不说这门课上得真累啊~
习题做到后面,我干脆懒得起草稿了,直接把做的答案用LaTeX录入了,既方便排版也方便修改。在这里分享给有需要的读者~答案是用中文写的,注释比较详细,适合刚学这门课的同学~
笔者所做的部分:《交换代数导引》参考答案.pdf
当然这份答案只包括老师对我们的要求的那部分习题,下面是网上搜索到的完整的习题解答,英文版的:
网上找到的答案:Jeffrey Daniel Kasik Carlson - Exercises to Atiya.pdf
如果答案有问题,欢迎留言指出。
将多项式分解为两个不可约多项式之和
By 苏剑林 | 2014-12-22 | 46333位读者 | 引用在高等代数的多项式一章中,通常会有这样的一道练习题:
证明任意有理数域上的多项式都能够表示为两个有理数域上的不可约多项式之和。
这是道简单的练习题,证明方法有多种。首先来介绍一个巧妙的证法。
一个巧妙证明
有理数域上的多项式问题等价于整数域上的多项式问题,因此,只需要对整数域上的多项式进行证明(这步转换使得我们可以使用艾森斯坦判别法)。设$f(x)$是整数域上的一个$n$次多项式:
$$f(x)=a_n x^n+a_{n-1} x^{n-1}+\dots+a_1 x+a_0$$
我们只需要注意到
$$p f(x)=\left[p f(x)+x^n+p\right]-(x^{n}+p)$$
实数域上有限维可除代数只有四种
By 苏剑林 | 2014-11-12 | 81235位读者 | 引用今天上近世代数课,老师谈到除环,举了一个非交换的除环的粒子,也就是四元数环,然后谈到“实数域上有限维可除代数只有4种”,也就是实数本身、复数、四元数和八元数(这里的可除代数就是除环)。这句话我听起来有点熟悉,又好像不大对劲。我记得在某本书上看过,定义为实数上的超复数系,如果满足模的积性,那么就只有以上四种。但是老师的那句话表明即使去掉模的积性,也只有四种。我自然以为老师记错了,跟老师辩论了一翻,然后回到宿舍又找资料,最终确定:实数域上有限维可除代数真的只有四种!下面简单谈谈我对这个问题的认识。
当然,这里不可能给出这个命题的证明,因为这个证明相当不简单,笔者目前也没有弄懂,但是粗略感觉一下为什么,还是有可能的。看到这个命题,我们一下子的感觉可能是:怎么会这么少!我们这里通过例子简单说明一下,确实不会多!
我们已经对复数系很熟悉了,也就是定义在实数上的向量空间,基为$\{1,i\}$,并且给定乘法为
$$1\times i=i \times 1=i,\quad 1^2=1,\quad i^2=-1$$
几何的数与数的几何:超复数的浅探究
By 苏剑林 | 2014-01-11 | 71863位读者 | 引用这也是我的期末论文之一...全文共17页,包括了四元数的构造方法,初等应用等。附录包括行列式与体积、三维旋转的描述等。使用LaTex进行写作(LaTex会让你爱上数学写作的)
几何的数与数的几何
――超复数的浅探究
摘要
今天,不论是数学还是物理的高维问题,都采用向量分析为基本工具,数学物理中难觅四元数的影子。然而在历史上,四元数的发展有着重要的意义。四元数(Quaternion)运算实际上是向量分析的“鼻祖”,向量点积和叉积的概念也首先出现在四元数的运算中,四元数的诞生还标记着非交换代数的开端。即使是现在,四元数还是计算机描述三维空间旋转问题最简单的工具。另外,作为复数的推广,四元数还为某些复数问题的一般化提供了思路。
本文把矩阵与几何适当地结合起来,利用矩阵行列式$\det (AB) =(\det A)(\det B)$这一性质得出了四元数以及更高维的超复数的生成规律,并讨论了它的一些性质以及它在描述旋转方面的应用。部分证明细节和不完善的思想放到了附录之中。
《新理解矩阵5》:体积=行列式
By 苏剑林 | 2013-12-25 | 62103位读者 | 引用在文章《新理解矩阵3》:行列式的点滴中,笔者首次谈及到了行列式的几何意义,它代表了n维的“平行多面体”的“体积”。然而,这篇文章写于我初学矩阵之时,有些论述并不严谨,甚至有些错误。最近笔者在写期末论文的时候,研究了超复数的相关内容,而行列式的几何意义在我的超复数研究中具有重要作用,因此把行列式的几何意义重新研究了一翻,修正了部分错误,故发此文,与大家分享。
一个$n$阶矩阵$A$可以看成是$n$个$n$维列向量$\boldsymbol{x}_1,\boldsymbol{x}_2,...,\boldsymbol{x}_n$的集合
$$A=(\boldsymbol{x}_1,\boldsymbol{x}_2,\dots,\boldsymbol{x}_n)$$
从代数的角度来看,这构成了一个矩阵;从几何的角度来看,这$n$个向量可以建立一个平行$n$维体。比如:平行四边形就是“平行二维体”,平行六面体就是“平行三维体”,高阶的只需要相应类比,不需要真正想象出高维空间的立体是什么样。








最近评论