主方程(master equation)是对随机过程进行建模的重要方法,它代表着马尔科夫过程的微分形式,我们的专业主要工具之一就是主方程,说宏大一点,量子力学和统计力学等也不外乎是主方程的一个特例。

然而,笔者阅读了几个著作,比如《统计物理现代教程》,还有我导师的《生物系统的随机动力学》,我发现这些著作对于主方程的推导都很模糊,他们在着力解释结果的意义,但并不说明结果的思想来源,因此其过程难以让人信服。而知乎上有人提问《如何理解马尔科夫过程的主方程的推导过程?》但没有得到很好的答案,也表明了这个事实。

马尔可夫过程 #

主方程是用来描述马尔科夫过程的,而马尔科夫过程可以理解为运动的无记忆性,说通俗点,就是下一刻的概率分布,只跟当前时刻有关,跟历史状态无关。用概率公式写出来就是(这里只考虑连续型概率,因此这里的$p$是概率密度):
$$\begin{equation}\label{eq:maerkefu}p(x,\tau)=\int p(x,\tau|y,t) p(y,t) dy\end{equation}$$
这里的积分区域是全空间。这里的$p(x,\tau|y,t)$称为跃迁概率,即已经确定了$t$时刻来到了$y$位置后、在$\tau$时刻达到$x$的概率密度,这个式子的物理意义是很明显的,就不多做解释了。

尽管$\eqref{eq:maerkefu}$式很直观,但用它来建模实际上存在两个比较困难的问题

1、为了建模就得写出$p(x,\tau|y,t)$,而事实上我们很难直接写出一个合理的跃迁概率出来;

2、即使写出来$p(x,\tau|y,t)$,方程是一个积分方程,而我们对积分方程的研究远不如微分方程。

因此,有必要写出它的微分方程形式。

主方程 #

我们设$\tau = t+\epsilon$
$$\begin{equation}\label{eq:maerkefu-2}p(x,t+\epsilon)=\int p(x,t+\epsilon|y,t) p(y,t) dy\end{equation}$$
并且考虑$\epsilon\to 0$的极限,保留到$\epsilon$的一阶项,我们有
$$\begin{equation}\label{eq:yueqian}p(x,t+\epsilon|y,t)=\delta(x-y)+\epsilon \tilde{W}(x,y,t)\end{equation}$$
其中用到了$p(x,t|y,t)=\delta(x-y)$这个事实,而
$$\begin{equation}\tilde{W}(x,y)=\left.\frac{\partial p(x,\tau|y,t)}{\partial \tau}\right|_{\tau=t}\end{equation}$$
我们对$\eqref{eq:maerkefu-2}$式两边都展开$\epsilon$到一阶项,得到
$$\begin{equation}p(x,t)+\epsilon\frac{\partial p(x,t)}{\partial t}=\int \left[\delta(x-y)+\epsilon \tilde{W}(x,y,t)\right] p(y,t) dy\end{equation}$$

$$\begin{equation}\label{eq:zhufangcheng-1}\frac{\partial p(x,t)}{\partial t}=\int \tilde{W}(x,y,t) p(y,t) dy\end{equation}$$

更便于建模 #

读者可以发现,$\eqref{eq:zhufangcheng-1}$式并非我们常见的主方程的形式,这是因为它不方便建模。我们再来看$\eqref{eq:yueqian}$式,注意我们有
$$\begin{equation}\int p(x,t+\epsilon|y,t) dx = 1\end{equation}$$
因此结合$\eqref{eq:yueqian}$式,则必须要求
$$\begin{equation}\label{eq:yueshu}\int \tilde{W}(x,y,t)dx = 0\end{equation}$$
科研中的建模过程是反过来的:需要先写出主方程的形式,然后去求解主方程。也就是说,为了用$\eqref{eq:zhufangcheng-1}$式建模,则需要写出$\tilde{W}(x,y,t)$,而$\tilde{W}(x,y,t)$要满足$\eqref{eq:yueshu}$式的约束条件,但我们很难凭空写出一个$\tilde{W}(x,y,t)$同时又满足这个约束。

幸运的是,我们可以用一个技巧来去掉这个约束。首先我们写出一个任意的函数$W(x,y,t)$,然后考虑
$$\begin{equation}\begin{aligned}&\int W(x,y,t)dx\\
=&\iint \delta(y-z) W(x,z,t)dxdz \quad (\text{接下来交换}x,z\text{的位置})\\
=&\iint \delta(y-x) W(z,x,t)dzdx\end{aligned}\end{equation}$$
从而我们可以让
$$\begin{equation}\tilde{W}(x,y,t) = W(x,y,t) - \int \delta(y-x) W(z,x,t)dz\end{equation}$$
那么它自动地满足$\eqref{eq:yueshu}$式,最终主方程的形式变为
$$\begin{equation}\label{eq:zhufangcheng-2}\frac{\partial p(x,t)}{\partial t}=\int \Big[W(x,y,t)p(y,t)-W(y,x,t)p(x,t)\Big] dy\end{equation}$$
这就是我们在教科书上能看到的主方程的形式,这时候对$W(x,y,t)$则没有特别的约束了,因此可以方便地用它来建模。至于对$W(y,x,t)$的物理意义的诠释,则是后话了。类似的推导过程可以平移到离散型的主方程,也不再赘述。

一点评价 #

从上面的过程可以看到,主方程之所以是我们经常看到的形式,是因为那种形式更方便我们进行建模,至于对结果的诠释,本质上来说都是强加的,不能算作推导过程。而多数著作对主方程的推导,侧重于对结果的物理诠释,对方程的形式的来源不加详述,是引起我们理解上的困难的重要原因之一,希望这里的文字可以对此做些补充。

转载到请包括本文地址:https://www.kexue.fm/archives/4598

更详细的转载事宜请参考:《科学空间FAQ》

如果您还有什么疑惑或建议,欢迎在下方评论区继续讨论。

如果您觉得本文还不错,欢迎分享/打赏本文。打赏并非要从中获得收益,而是希望知道科学空间获得了多少读者的真心关注。当然,如果你无视它,也不会影响你的阅读。再次表示欢迎和感谢!

如果您需要引用本文,请参考:

苏剑林. (Oct. 06, 2017). 《从马尔科夫过程到主方程(推导过程) 》[Blog post]. Retrieved from https://www.kexue.fm/archives/4598

@online{kexuefm-4598,
        title={从马尔科夫过程到主方程(推导过程)},
        author={苏剑林},
        year={2017},
        month={Oct},
        url={\url{https://www.kexue.fm/archives/4598}},
}