高斯型积分的微扰展开(三)
By 苏剑林 | 2015-04-26 | 25835位读者 | 引用换一个小参数
比较《高斯型积分的微扰展开(一)》和《高斯型积分的微扰展开(二)》两篇文章,我们可以得出关于积分
$$\int_{-\infty}^{+\infty} e^{-ax^2-\varepsilon x^4} dx\tag{1}$$
的两个结论:第一,我们发现类似$(4)$式的近似结果具有良好的性质,对任意的$\varepsilon$都能得到一个相对靠谱的近似;第二,我们发现在指数中逐阶展开,得到的级数效果会比直接展开为幂级数的效果要好。那么,两者能不能结合起来呢?
我们将$(4)$式改写成
$$\int_{-\infty}^{+\infty} e^{-ax^2-\varepsilon x^4} dx\approx\sqrt{\frac{2\pi}{a+\sqrt{a^2+6 \varepsilon}}}=\sqrt{\frac{\pi}{a+\frac{1}{2}\left(\sqrt{a^2+6 \varepsilon}-a\right)}}\tag{6}$$
高斯型积分的微扰展开(二)
By 苏剑林 | 2015-03-07 | 23530位读者 | 引用为什么第二篇姗姗来迟?
其实要写这系列之前,我已经构思好了接下来几篇的内容,本来想要自信地介绍自己想到的一些积分展开的技巧;而且摄动法我本身就比较熟悉,所以正常来说不会这么迟才有第二篇。然而,在我写完第一篇,准备写第二篇的期间,我看到了知乎上的这篇回复:
http://www.zhihu.com/question/24735673
这篇文章大大地拓展了我对级数的认识。里边谈及到了积分的展开是一个渐近级数。这让我犹豫了,怀疑这系列有没有价值,因为渐近级数意味着不管怎样的展开技巧,得到的级数收敛半径都是0。
后来再想想,就算是渐近级数,也有改进的空间,有加速收敛的方法,所以我想我这几篇文章,应该还有一点点意义吧,还可以顺便介绍一下渐近级数和奇点的相关理论。嗯,就这么办吧。
高斯型积分的微扰展开(一)
By 苏剑林 | 2015-02-14 | 33336位读者 | 引用前段时间在研究费曼的路径积分理论,看到路径积分的微扰方法,也就是通过小参数展开的方式逐步逼近传播子。这样的技巧具有非常清晰的物理意义,有兴趣了解路径积分以及量子力学的读者,请去阅读费曼的《量子力学与路径积分》。然而从数学角度看来,这种逼近的技巧实际上非常粗糙,收敛范围和速度难以得到保证。事实上,数学上发展了各种各样的摄动技巧,来应对不同情况的微扰。下面我们研究积分
$$\int_{-\infty}^{+\infty} e^{-ax^2-\varepsilon x^4} dx\tag{1}$$
或者更一般地
$$\int_{-\infty}^{+\infty} e^{-ax^2-\varepsilon V(x)} dx\tag{2}$$
路径积分的级数展开比它稍微复杂一些,但是仍然是类似的形式。
轻微的扰动——摄动法简介(3)
By 苏剑林 | 2013-03-07 | 39015位读者 | 引用微分方程领域大放光彩
虽然微分方程在各个计算领域都能一展才华,不过它最辉煌的光芒无疑绽放于微分方程领域,包括常微分方程和偏微分方程。海王星——“笔尖上发现的行星”——就是摄动法的著名成果,类似的还有冥王星的发现。天体力学家用一颗假设的行星的引力摄动来解释已知行星的异常运动,并由此反推未知行星的轨道。我们已不止一次提到过,一般的三体问题是混沌的,没有精确的解析解。这就要求我们考虑一些近似的方法,这样的方法发展起来就成为了摄动理论。
跟解代数方程一样,摄动法解带有小参数或者大参数的微分方程的基本思想,就是将微分方程的解表达为小参数或大参数的幂级数。当然,这是最直接的,也相当好理解,不过所求得的级数解有可能存在一些性态不好的情况,比如有时原解应该是一个周期运动,但是级数解却出现了诸如$t \sin t$的“长期项”,这是相当不利的,因此也发展出各种技巧来消除这些项。可见,摄动理论是一门应用广泛、集众家所大成的实用理论。下面我们将通过一些实际的例子来阐述这个技巧。
轻微的扰动——摄动法简介(2)
By 苏剑林 | 2013-02-06 | 39009位读者 | 引用为了让大家更加熟悉摄动法的基本步骤,本文再讲一个用摄动法解代数方程的例子。这是从实际研究中出来的:
$$\begin{eqnarray*} x=\frac{k(1+k^2+k^4+l^2)}{2(1+k^2)^2} \\ k=\frac{dy}{dx}\end{eqnarray*} $$
这是一道微分方程。要求解这道方程,最好的方法当然是先从第一式解出$k=k(x)$的形式然后再积分。但是由于五次方程没有一般的显式解,所以迫使我们要考虑近似解。当然,一般来说熟悉mathematica的人都会直接数值计算了。我这里只考虑摄动法。
我们将原方程变为下面的形式:
$$x=\frac{k}{2}[1+\frac{l^2}{(1+k^2)^2}]$$
轻微的扰动——摄动法简介(1)
By 苏剑林 | 2013-01-16 | 47562位读者 | 引用为了计算实际问题,我们总会采用各种各样的理想模型。一般而言,一个模型越接近实际现象,它往往会越复杂。而忽略掉多数微小的干扰,只保留一些主要的项,这通常可以得到一个相当简单、能够精确解出的模型。以这样的一个可以精确解出的近似模型为基础,逐渐地把微小项的影响添加进去,使得我们的答案越来越准确,这就是摄动法的思想,也称作“微扰理论”。这种方法源于求解天体力学的N体问题,而现在已经发展成为一门相当系统的学科,并应用到了相对多的领域,如量子力学、电子理论等。
其实不难发现,实际问题中存在不少这样的例子,即当我们要计算某个现象时,先考虑最突出的,然后再考虑细节。比如说,要计算地球的轨道,先把它看成一个与太阳组成的纯粹的二体系统,然后把各种微小效应加进去,比如月球的影响、各大行星的影响甚至由于地球的不规则形状所产生的影响等。当然,不仅仅是这一类复杂的“大问题”,我们平常可能会遇到的一些“小问题”有可能也让摄动法派上用场。本文试图将摄动法介绍给各位读者。
摄动法的主要步骤是先忽略微小影响(令小参数为0),求出精确解;然后把所要求的解表达为关于小参数的幂级数。这个方法可以用于解答代数方程、微分方程等等各种领域。下面先以一个简单的代数方程来说明:
一、求解方程:$\varepsilon x^3+x^2=p^2$
最近评论